首页

搜索 繁体
请收藏本站网址:wenxue38.com

第1o1章(1 / 2)

时而眉尖轻蹙若遇疑难之坎,时而展颜舒意似有所得之喜,我于侧侍奉虽未可尽解其算,然亦深感其专注之忱志意之坚。

再见及于三角与勾股之合参,姐姐先取直角之形定其锐者为一角,其间,正弦角之幂与余弦角之幂相并为一,此乃三角学之根基。姐姐遂由是推求半角之式,设半角为半之锐,依理有,余弦角等于一减二倍正弦半锐之幂,移项而得,正弦半锐等于正负方根下,一减余弦角除以二,姐姐取勾三股四弦五之特例,设其锐角之邻边为四,斜边为五,则余弦角为五分之四,代入半角之式以求正弦半锐,姐姐细加推算得正弦半锐为十分之一之方根,又以勾股之理验之,设半角所对边为对边之数,依理列算,对边之数之幂,加五分之四乘二分之五之幂,等于二分之五之幂,先解五分之四乘二分之五之幂得四,二分之五之幂为四分之二十五,遂得对边之数之幂为四分之九,故对边之数为二分之三,而正弦半锐等于对边之数除以二分之五亦为十分之一之方根,恰相契合,证半角之式无误。继而思究倍角之式,正弦二倍角等于二倍正弦角乘余弦角,余弦二倍角等于余弦角之幂减正弦角之幂。

姐姐仍据勾股之形设勾为勾长之数,股为股长之数,弦为弦长之数,一锐角为锐,则正弦锐等于勾长之数除以弦长之数,余弦锐等于股长之数除以弦长之数,姐姐精心构作一与原直角之形相似,且角为二倍锐之形,于此形中依勾股之理及相似关联推求,据相似之理,对应边成比例,设新形之勾为新勾长之数,股为新股长之数,弦为新弦长之数,则新勾长之数与勾长之数、新股长之数与股长之数、新弦长之数与弦长之数之比皆同于相似比,而正弦二倍锐等于新勾长之数除以新弦长之数,余弦二倍锐等于新股长之数除以新弦长之数,由勾股之理新勾长之数之幂加新股长之数之幂等于新弦长之数之幂,又新勾长之数等于相似比乘勾长之数,新股长之数等于相似比乘股长之数,新弦长之数等于相似比乘弦长之数,代入而得相似比之幂乘勾长之数之幂与股长之数之幂之和,等于相似比之幂乘弦长之数之幂亦合勾股之理,再以正弦锐等于勾长之数除以弦长之数,余弦锐等于股长之数除以弦长之数推之,可得正弦二倍锐等于二倍勾长之数乘股长之数除以弦长之数之幂,即二倍正弦锐乘余弦锐,余弦二倍锐等于股长之数之幂减勾长之数之幂除以弦长之数之幂,即余弦锐之幂减正弦锐之幂,费尽心力终得证之,我观姐姐推证,虽繁复而不紊,条理井然,足见其深厚精醇。

至于勾股之理求几何最值之法,姐姐设一圆,圆心名之曰圆中半径称径长,圆外有一点号为点外,自点外引圆之切线,切点命为切处。姐姐连圆中与点外,观之,切处与径长成直角之形,径长既定为常值,依勾股之理切处之幂等于圆中点外之距之幂减径长之幂,欲使切处之值最小,唯求圆中点外之距至微,姐姐沉虑良久,悟得圆中点外之距近极之时,即点外至圆心圆中之距最近刹那,亦唯当圆中点外之连线段垂直于过点外与圆心圆中之直线,圆中点外之距方为最小,由是,此最值之求豁然得解,姐姐由此例更思及椭圆双曲诸般圆锥之线,若有定点与定线求某相关线段最值亦或可借勾股之理通解,如椭圆者,设其方程为椭圆定式,有一定点号为定处曲线上一动点名为动处,姐姐欲求定点与动点之距最值,先连圆中与定处、圆中与动处,于三角形内,定点与动点之距之幂,等于圆中与定处之距之幂加圆中与动处之距之幂,减二倍圆中与定处之距乘圆中与动处之距乘夹角余弦,而圆中与动处之距与椭圆之关联,可由椭圆方术表述再以勾股之理之思,化诸量为直角之形边际关系,设椭圆上一点坐标合于参数之式,圆中与动处之距可表为一式,圆中与定处之距为确定之值,姐姐将此诸量代入定点与动点之距之式,历经繁难运算化简以求最值,其间虽计算繁冗,然姐姐心无旁骛步步为营终得近于正果。

姐姐于演草之际诸般神态尽现,或持笔急书,若灵思泉涌沛然莫御,或停笔凝思,目光幽邃似洞穿纸背,直入数象玄冥,我既常见姐姐专注心亦生敬,每见其有所悟彻我亦随喜,虽未能同其深研精究然亦感知数术魅力,若磁石引针令人心驰神往。

余晖将再姐姐犹未辍,取古昔算题集册择勾股相关者以今所悟之法解之,有一题云:“矩形之地,长阔相去若干,对角之络长若干,求长与阔各几何。”姐姐设长为长数,阔为阔数,对角之络为对角数,依勾股之理列之,长数之幂加阔数之幂等于对角数之幂,又有长阔差或和之条件,若长阔差为差数,即长数减阔数等于差数,则长数等于阔数加差数,代入勾股之式得阔数加差数之幂加阔数之幂等于对角数之幂,展开为阔数之幂加二倍差数阔数加差数之幂加阔数之幂等于对角数之幂,整理得二倍阔数之幂加二倍差数阔数加差数之幂减对角数之幂等于零。

姐姐以二方解法,先算判别式为某式,则阔数等于负差数加减方根下某式除以二乘二进而可得长数等于阔数加差数,又有题云:“山高难测,于山下平处某点望山顶,仰角若干,退行若干步,再望山顶,仰角又若干,求山高。”姐姐以三角之

热门小说推荐

最近入库小说